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Orientational ordering in fluids with partially constrained molecule orientations

T. G. Sokolovska, R. O. Sokolovskii,* and M. F. Holovko
Institute for Condensed Matter Physics, Svientsitskii 1, Lviv 79011, Ukraine

~Received 9 March 2000!

Molecular orientations in anisotropic fluids can be partially constrained as a result of electric or magnetic
fields or interface influences. A statistical approach for the investigation of the orientational ordering in such
systems is proposed. The long-range correlations are taken into account consistently. The method is illustrated
for the well-known thermotropic nematic model in an infinite disorienting fieldW, when the molecules are
constrained to orient perpendicularly to the field direction. For this problem the analytical solution of the
anisotropic Ornstein-Zernike equation is obtained, and the asymptotic expression for the long-range correla-
tions on large distances is given. The phase diagram and elastic constants are calculated forW→` and are
compared with the usual case of a uniaxial nematic ordering atW50. In the caseW→` when the temperature
decreases the orientational phase transition of the second order becomes the one of the first order at a tricritical
point. The disorienting fieldW increases much the region of an ordered fluid. It is shown that at a given
pressure the orientational ordering temperature forW→` is higher about 1.2–1.5 times than the one atW
50. The orientational ordering pressure is less about 4–5 times than the pressure of the uniaxial nematic
ordering (W50) at the same temperature. The disorienting field increases elastic properties of the model under
consideration.

PACS number~s!: 61.30.2v, 61.20.Gy, 64.60.Cn
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The formation of a one-component biaxial nematic ph
is usually associated with fluids consisting of molecules~or
aggregates of molecules! that do not have axial symmetry
Indeed, there is no example where a pure system of unia
molecules forms a biaxial nematic without external infl
ences@1#. But at some conditions this system does beco
biaxial. This takes place near the interface with other m
dium ~wall! if nematic molecules prefer to be parallel to th
surface plane@2#. The biaxiality can be induced also by
disorienting field@3#. It can be either the electric or the ma
netic field since many nematics have a negative anisotro
and their molecules tend to align perpendicularly to the fi

@4#. In the limiting case of a strong disorienting fieldWW di-
rected along thez axis the particles are constrained to
parallel to thexy plane~Fig. 1!. For this case one can use th
description that will be referred in this paper as the pla
rotator ~PR! models. These models~in which an orientation
of the particlei is completely determined by the single ang
w i) were studied intensively for the lattice systems~see Refs.
@5–7#, and references therein!. The similar situation of par-
tially constrained orientations can appear in systems of no
niaxial molecules. On the experimental side, this situat
could take place for para-azoxy-anisole~PAA! in a strong
electric field. PAA molecule is usually described as a rig
bar with the permanent electric dipole in its center formin
62° angle with the long axis. In the strong enough elec
field the dipoles align@8#, and the orientation of the long axi
of any particle can be determined by the single anglew in the
plane perpendicular to the field direction~Fig. 2!.

Any oriented plane rotator~OPR! model ~in a result of
spontaneous ordering, for example! is a biaxial system in

*Author to whom correspondence should be sent. Email addr
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fact, because it has two principal directions:~1! that perpen-
dicular to the plane of particle rotations,~2! that given by the
direction of orderingn̂ lying in this plane. In general, a bi
axial system is characterized by two groups of order para
eters, which describe ordering along two symmetry axes.
OPR fluid is alimiting biaxial system with the perfect order
ing with respect to one of the symmetry axes. We can
clude from consideration the group of the order parame
describing this perfect ordering. In the coordinate system
done in Fig. 1 the axis of ‘‘the perfect ordering’’ is thez axis,
and an OPR model is characterized by order parameterSn
5^cos(nw)& that depend on the temperature, density, and
terparticle interaction parameters.

Let us note that models with fixed molecule orientatio
~fluids of parallel molecules! were studied in the context o
uniaxial nematics@9#. These studies helped to estimate ho
thermodynamical and structural properties of uniaxial flu
differ from those of isotropic ones. Similarly, to study th

s:
FIG. 1. The coordinate system used in this paper.n̂ is the direc-

tor, W is a disorienting field,w determines the molecule orientation
u5p/2 is a constant for the PR models.
6771 ©2000 The American Physical Society
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OPR fluid is to estimate the influence of biaxiality on phy
cal properties of nematics. The behavior of nematics~includ-
ing the OPR fluids! results from the interplay of orientatio
and density fluctuations. A consistent study of nematics
to take into account correlations of all types, including c
relations between spatial and orientational variables. Mo
over, in spontaneously ordered nematics there are the l
range correlations of director fluctuations. The existence
these long-range correlations is a substantial property
nematics and results from the fact that the direction of ord
ing is not predetermined and can be rotated without any
ergy cost. Their calculations are very important because
asymptotic behavior of these correlations at large distan
determines the critical light scattering and elastic proper
of nematics. In Refs.@10–13# the statistical approach ensu
ing a correct treatment of correlations was developed
uniaxial fluids. But consistent methods to calculate corre
tion functions in the OPR fluids have not been developed

In this paper we propose a statistical method of the inv
tigation of the OPR models that is based on the solution
the famous Lovett equation@14#. We consider a generally
known model for thermotropic nematics in an infinite
strong disorienting fieldW as an illustration of our approach
The pair correlation functions and the single-particle dis
bution function of this system are calculated analytically
the self-consistent solution of the Ornstein-Zernike a
Lovett equations. The obtained elastic constants and p
diagrams forW→` are compared with those for the uniaxi
nematic case (W50) in the same model. The suggest
method can be used for a numerical solution of any ot
model with partially constrained orientations.

I. THE LOVETT EQUATION FOR THE FLUIDS WITH
PARTIALLY CONSTRAINED MOLECULE

ORIENTATIONS

The Lovett equation follows from the fundamental pri
ciple of the free energy minimization@14# and relates the pai
direct correlation functionc(1,2) and the one-particle distri
bution functionf (1) @where (1)5(R1 ,v1) is a complete se
of coordinates of particle 1#. For anisotropic fluids the Lovet
equation takes the form

FIG. 2. The model for PAA in the strong electric fieldE, d is a
permanent electric dipole forming a 62° angle with the long axis
a molecule.
s
-
e-
g-
f

of
r-
n-
e

es
s

r
-
t.

s-
f

-

d
se

r

“v1
ln r~v1!5E c~R,v1 ,v2!“v2

r~v2!dRdv2

2“v1

v~v1!

kBT
, ~1.1!

wherer(v1)5r f (v1), r denotes a number density,“v is
the angular gradient operator for an arbitrary particle@15#,
v(v1) is a potential of the interaction with a uniform exte
nal field. Let us consider a system of uniaxial molecules
the infinite disorienting field. We note that in general
orientation of a linear~uniaxial! molecule 1 is determined by
a set of two anglesv15(u1 ,f1). For the disorienting field
directed along thez axis we can writev(v1)5WP2(cosu1),
where Pl(x) is the l th order Legendre polynomial. Whe
W→`, for thex andy components of Eq.~1.1! one obtains
that r(v1)50 if u1Þp/2. Sincev1[(w1) we can use the
PR description now and the Lovett equation for the ani
tropic fluids with partially constrained orientations is repr
sented by thez component of Eq.~1.1!

]

]w1
ln r~w1!5E c~w1 ,w2!

]

]w2
r~w2!dw22

]

]w1

v~w1!

kBT
~1.2!

or, after integration by parts

]

]w1
ln r~w1!52E F ]

]w2
c~w1 ,w2!Gr~w2!dw2

2
]

]w1

v~w1!

kBT
, ~1.3!

wherev(w1) is a potential of the interaction with the fiel
that is directed in the xy-plane, c(w1 ,w2)
5*c(R,w1 ,w2)dR. It should be noted that for a bulk phas
dR5R2dRsinuRdwR, for a two-dimensional systemdR
5RdRdwR .

It is customary to consider the Ornstein-Zernike~OZ!
equation as a definition for the direct correlation functio
Sometimes, one can avoid a solution of the OZ equation
expressc(1,2) via a pair interaction potentialf(1,2). For
example, for very long-range and weak interactions~similar
to those described by the Kac potential! the direct correlation
function in the mean field formc(1,2)52f(1,2)/kBT
equals the exact one; in the zero-density limitc(1,2) may be
written as the Mayer functionf (1,2)5 exp@2f(1,2)/kBT#
21. It should be noted that in these limiting cases the sy
metry of c(1,2) coincides with the pair potential symmetr
But in a general case the direct correlation function of
orientationally ordered fluid loses the rotational invarian
intrinsic in the pair potential and reflects the symmetry of t
whole system. In this general casec(1,2) should be found
from the Ornstein-Zernike equation

h~1,2!5c~1,2!1E r~3!h~1,3!c~3,2!d~3!, ~1.4!

h(1,2) is the total correlation function of the system, for t
PR modelsd(3)5dR3dw3 , r(3)5r f (w3). In Ref. @16# this
problem was solved for the partial casef (w3)51/2p within
the hypernetted chain~HNC! and Percus-Yevick~PY! ap-

f
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proximations. For the OPR case, when the directorn̂ is par-
allel to they axis, the one-particle distribution function ca
be written in the form

f ~w!5Z21 expS (
n.0

An cos~nw! D , ~1.5!

whereZ is a normalization constant. For a bulk plane rota
fluid c(1,2) can be represented in the form:

c~1,2!5 (
n1 ,n2

(
l ,m

cn1n2m
l ~R12!e

in1w1e2 in2w2Ylm~R̂12!,

~1.6!

and for the two-dimensional fluid in the following form:

c~1,2!5 (
n1 ,n2 ,m

cn1n2m~R12!e
in1w1e2 in2w2eimwR12.

~1.7!

Taking into account that the direct correlation function
real and invariant with respect to a particle permutation,
obtain the following expansion forc(w1 ,w2)

c~w1 ,w2!5 (
n1 ,n2>0

@cn1n2
cos~n1w1!cos~n2w2!

1 c̄n1n2
sin~n1w1!sin~n2w2!#. ~1.8!

When deriving Eq.~1.8! we took into account that the OP
is symmetric with respect to theyz plane, where the both
principal directions lay. Substituting Eqs.~1.5! and ~1.8! in
Eqs.~1.3! and~1.2! we obtain relations that hold exactly fo
the OPR:

n1An1
5 (

n2 ,n3

r c̄n1n2
^sin~n2w!sin~n3w!&n3An3

, ~1.9!

n1An1
5(

n2

r c̄n1n2
n2^cos~n2w!&, ~1.10!

where ^•••&5*••• f (w)dw, ^cos(n2w)&5Sn2
are the order

parameters of the OPR, 2^sin(n2w)sin(n3w)&5Sn22n3
2Sn21n3

can be expressed in terms of the order parameters. M
equations~1.9! and ~1.10! constitute an exact algebraic re
resentation of the Lovett equation for the OPR and can
used for different fluids with partially constrained orient
tions. For example, they are suitable for the case presente
Fig. 2.

Equations~1.9! and~1.10! relate the coefficientsAn of the
single-particle distribution function with the density, tem
perature, and parameters of the model potential. This de
dence is determined by the direct correlation function h
monics c̄n1n2

that are orthogonal to the both princip
directions. From the anisotropic OZ equation~1.4! and rela-
tion ~1.9! it can be shown that the corresponding harmon
of the whole correlation functionh̄n1n2

are infinite in the

absence of the fieldv(w). This feature is connected with th
critical nature of anisotropic fluids~the presence of the long
range correlations! and was discussed for uniaxial cases
r

e
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e
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n-
r-

s

Refs. @10# and @11#. It should be stressed that these spec
harmonics for the OPR phase are connected with the co
lations of director fluctuations~as well as in the uniaxia
case! and give infinite contributions into the transverse su
ceptibility ~along thex direction!. Therefore, the director can
be rotated in thexy plane without any energy cost. At th
same time these infinite harmonics do not contribute to
structure factor, which is finite~in other words, the OPR
phase is mechanically stable!.

We note that Eqs.~1.9!,~1.10! hold not only in the whole
region of the OPR, but in the point, where the isotropic P
system loses the orientational stability. In order to determ
this point one has to getc(1,2) from the isotropic OZ equa
tion ~1.4! @r(w3)5r/2p# in any approximation and to equa
average values in Eq.~1.9! to the isotropic ones

^cos~n2w!&50; ^sin~n2w!sin~n3w!&5
1

2
dn2n3

.

~1.11!

From Eqs.~1.9! and ~1.10!, useful relations follow:

(
m>1

~Sn2m2Sn1m!mAm52nSn . ~1.12!

This rule connects the coefficients of the distribution fun
tion in the exponential form with the system order para
eters. Using the assumption that in exponential form~1.5!
only A1Þ0, one obtains from Eq.~1.12! the well-known
recurrent relations from the theory of the cylindrical Bes
functions:

~Sn212Sn11!A152nSn . ~1.13!

This relation allows one to express all higher order para
eters viaA1 andS1 using just simple arithmetic.

II. ANALYTICAL SOLUTION OF THE MEAN SPHERICAL
NEMATIC MODEL IN AN INFINITE DISORIENTING

FIELD

We shall illustrate the proposed approach dealing with
known model of thermotropic nematics@17#: the pair poten-
tial is a sum of the hard-sphere potential for spheres of
ameters and of anisotropic partv(1,2):

v~1,2!5v2~R12!
3 cos2 v1221

2
, ~2.1!

where v12 is the angle between the preferred axes of
molecules,v i5(u i ,w i) being the orientation of moleculei,
R12 is the distance between the molecule mass centers,

v2~R12!52A~zs!2
exp~2zR12!

R12/s
. ~2.2!

The correlation functionsh(1,2) andc(1,2) are obtained
from the OZ equation~1.4!. Within the mean spherical clo
sure~MSA!

c~1,2!52v~1,2!/~kBT!, R12.s ~2.3!
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the model is soluble analytically in an isotropic pha
@r(3)5r/(4p)# @17# and in a uniaxial nematic case@r(3)
5r f (u3)# @12,10#. The method developed in Ref.@10# was
expanded for a numerical investigation of this model with
the reference HNC, HNC, and PY approximations in R
@18#. The comparison with the Monte Carlo simulation ca
ried out in a broad interval of temperatures@18# shows that
the MSA gives the most reliable description of the mod
thermodynamics. Due to Eqs.~1.9!,~1.10! it is possible to
find the analytical solution in the MSA for this model in a
infinite disorienting field~in other words for the OPR fluid!.
For this case Eq.~2.1! transforms into the pair potential

vW→`~1,2!5v2~R12!~3 cos2 w1221!/2

5v2~R12!~3 cos~2w12!11!/4. ~2.4!

The interaction potential~2.1! we will refer to as the case o
zero disorienting field (W50). In the MSA ~2.3! there is a
simple expansion forc(1,2) of the OPR:

cW→`~1,2!5 (
n1 ,n250,2

@cn1n2
~R!cos~n1w1!cos~n2w2!#

1 c̄22~R!sin~2w1!sin~2w2!. ~2.5!

For the isotropic PR fluid one hasc22(R)5 c̄22(R) and
c20(R)5c02(R)50, so that

cW→`
iso ~1,2!5c00~R!1c22~R!cos~2w12!. ~2.6!

We have to note that the expansion~2.5! is invariant with
respect to the transformationw1→p2w1 and w2→p2w2,
since the orientational ordering is nonpolar in the model s
tem for the caseW→` as well as for the caseW50. For
expansion~2.5! the relations~1.9! and~1.10! gain the simple
form

15r^sin2~2w!&E c̄22~R!dR, ~2.7!

A25r^cos~2w!&E c̄22~R!dR. ~2.8!

Now, knowing the self-consistency equation for the OP
order parameters

^•••&5E ~••• !expF ^cos~2w!&cos~2w!

^sin2~2w!&
Gdw

3H E expF ^cos~2w!&cos~2w!

^sin2~2w!&
GdwJ 21

, ~2.9!

one can solve the OZ equation~1.4! under additional condi-
tion ~2.7! analytically by the Wertheim-Baxter factorizatio
method@10,11#.

Due to the OPR symmetry the OZ equation separates
tially:

h̄22~R12!5 c̄22~R12!1r^sin2~2w!&E dR3c̄22~R13!h̄22~R32!,

~2.10!
.
-

l

-

r-

hi j ~R12!5ci j ~R12!1rE dR3(
k,l

cik~R13!

3^cos~kw!cos~ lw!&hl j ~R32!, ~2.11!

where all indices equal 0 or 2. The closure of the correlat
functions in theR space are as follows:

R,s: h00~R!521,

the other harmonics are equal 0 under the core,

R.s: cii ~R!5 c̄i i ~R!5~ i 11!bA~zs!2s
exp~2zR!

4R
,

the other harmonics of the direct correlation function equa
above the core.

A detailed solution of the anisotropic OZ equation und
an additional condition such as Eq.~2.7! was done in litera-
ture @10–12#. Therefore, we present only several importa
analytical results, which follow from Eq.~2.10!.

A basis for the solution is a factor correlation functio
which has the following form:

Q~R!5
z

r^sin2~2w!&
@Q0~R!1D̃ exp~2zR!#, ~2.12!

whereQ0 is a short-range part defined as

Q0~R!5C̃@exp~2zR!2 exp~2zs!#, R,s,

Q0~R!50, R.s. ~2.13!

We note that knowing the parameter^sin2(2w)& one can cal-
culate from Eq.~2.9! all order parameters. This parameter~as
well as dimensionless coefficientsD̃ and C̃) can be found
from the purely algebraical relations following from Eq
~2.10! and ~2.7!. One gets

3

4
bAh^sin2~2w!&5R~zs!, ~2.14!

whereh5prs3/6,

R~zs!5
1

24
D̃F11~12D̃ !S 12

D0
2~2zs!

k D G ,
D̃5

2b2Ab224ac

2a
, C̃5~12D̃ !/k,

a52k exp~22zs!2~k21!@k2D0
2~2zs!#,

b5~k21!c2k1D0
2~2zs!1k exp~22zs!,

c52k2D0
2~2zs!, Dn~x!5 exp~x!2(

l 50

n
xl

l !
,

k5e2zsD1~zs!. ~2.15!

A special integral transform ofQ(R)
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Q~k!512r^sin2~2w!&E
0

`

exp~ ikR!Q~R!dR ~2.16!

plays a particular role. It is connected with harmonics of
correlation functions

12r^sin2~2w!&E
0

`

exp~ ik•R!c̄22~R!dR5Q~k!Q~2k!,

~2.17!

11r^sin2~2w!&E
0

`

exp~ ik•R!h̄22~R!dR

5@Q~k!Q~2k!#21. ~2.18!

The factor correlation function atk50 is inversely propor-
tional to the range of correlations. It follows from Eq.~2.7!
thatQ(k50)[0 in the OPR and is connected with the lon
range correlations~that were mentioned in Sec. I!. Knowing
the explicit form~2.12! of the factor correlation function we
can obtain asymptotic expression for the single long-ra
harmonich̄22(R) of the total correlation function

h̄22~R→`!}
~zs!2

6@~zs!2C̃ exp~2zs!22#2h^sin2~2w!&

s

R
.

~2.19!

The harmonicc̄22(R) can also be expressed explicitly
terms of the factor correlation functionQ(R) and its deriva-
tive Q8(R):

2pRc̄22~R!52Q8~R!1r^sin2~2w!&E
0

`

Q8~R1t !Q~ t !dt.

~2.20!

After simple integration we get

2pRc̄22~R!5
z2

r^sin2~2w!&
@e2e2zR1e01e1ezR#, R,s,

~2.21!

where

e25
1

2
~C̃1D̃ !~2C̃e2zs2D̃2C̃12!2

1

2
C̃D̃e22zs,

e052C̃2e22zs,

e15
1

2
C̃~C̃1D̃ !e22zs.

Let us remind that forR.s the direct correlation function is
defined by the MSA closure. As is to be expected, forzs
→0 ~the Kac potential limit! our results are equivalent to th
mean field solution:

c~1,2!5ch.s.~R12!2v~1,2!/kBTfor anyR12, ~2.22!

where ch.s.(R12) is the direct correlation function of har
spheres in the PY approximation, andR(zs)51/24.
e

e

When ^sin2w&51
2 from Eq. ~2.14! follows the explicit

equation for the line in the temperature-density space wh
the isotropic PR system loses orientational stability with
spect to the OPR:

S hA

kBTD
W→`

*
5

8

3
R~zs!, ~2.23!

where the function of the interaction range parameter o
R(zs) is connected with the instability condition of the iso
tropic phase with respect to the uniaxial nematic by the
lation

S hA

kBTD
W→0

*
55R~zs!. ~2.24!

One can see from Eqs.~2.23! and~2.24! that in the presence
of a strong (W→`) ‘‘disorienting’’ field the orientational
instability of an unoriented phase with respect to an orien
one appears at much higher temperatures than in usual
of zero field.

Let us emphasize some differences of the OPR (W→`)
from the uniaxial nematic (W50). It was found@3# that in a
strong disorienting field the orientational phase transition
nematics can change its order from the first to the sec
one. This takes place for systems of nonpolar molecu
when the system symmetry changes from a uniaxial t
strongly biaxial one. We shall consider this point from t
point of view of the integral equation approach. As it w
noted above, the exact relations~1.9! and ~1.10! @or Eqs.
~2.7! and ~2.8!, for our model# hold not only in the whole
region of the OPR, but also in the point where the isotro
PR system looses the orientational stability. We have to
mind that in these points the long-range orientational co
lations are presented, and the susceptibility tends to infin
Therefore, at greater densities~or lower temperatures! the
isotropic state is impossible. This isotropic stability cond
tion follows from Eq.~2.7!, where we have to set^sin2(2w)&
equal to its isotropic value (1/2) and to takec̄22(R) from a
solution of the isotropic OZ equation@r(w)5r/2p#:

2

r
5E c̄22

iso~R!dR. ~2.25!

On the other hand, we can determine the limit of the O
existence, that is the lowest density~at a given temperature!
or the highest temperature~at a given density! where the
OPR phase is possible. The OPR phase is characterized
nonzero order parameter and long-range correlations of
rector fluctuations. From the anisotropic OZ and Lov
equations we have obtained two conditions that desc
these features and must hold in the whole OPR phase:~i! the
self-consistency equation for the order parameterS2
5^cos(2w)&

S25

E dwcos~2w!exp@A2 cos~2w!#

E dw exp@A2 cos~2w!#

; A25
S2

^sin2~2w!&
;

~2.26!
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has to have a nonzero solution;~ii ! Eq. ~2.7!. The latter con-
dition ensures the existence of the long-range correlation
director fluctuations. In order to obtain the limit of the OP
existence we have to put into Eq.~2.7! the value of
^sin2(2w)& at which a nontrivial solution of self-consistenc
equation~2.26! appears. An equation of the form~2.26! is
known to have a nontrivial solution starting with^sin2(2w)&
51/2, S2 smoothly raising from 0 to 1 when̂sin2(2w)& de-
creases from 1/2 to 0. Taking this into account, we obtain
limiting condition of the OPR

2

r
5E c̄22

aniso~R!dR, ~2.27!

wherec22
aniso(R) is a solution of the anisotropic OZ equatio

at ^sin2(2w)&51/2 ~which corresponds toS250). Thus, Eqs.
~2.25! and ~2.27! coincide for our PR model. The equiva
lence of Eqs.~2.25! and~2.27! supports the possibility of the
second order phase transition that does take place at
temperatures.

The similar analysis of the model forW50 @12,11# shows
that in a uniaxial nematic the situation is different. In th
case the self-consistency equation is the well-known May
Saupe one@8# which has no solution for small values of th
order parameter. The bifurcation value of the order para
eter (S250.3236) differs from the isotropic one (S250).
Therefore, the conditions analogous to Eqs.~2.25! and~2.27!
are not equal: the bifurcation takes place before~at smaller
densities and higher temperatures! the isotropic liquid looses
its orientational stability. Thus, the orientational phase tr
sition of the second order is impossible, but the one of
first order does exist.

III. RESULTS. PHASE DIAGRAMS AND ELASTIC
CONSTANTS

Using the analytical solution in the MSA for the OPR w
have calculated a virial pressure

Pv
W→`5rkBT2

r2

6 E dRW 12dw1dw2R12

]

]R12
v~1,2! f ~w1!

3@11hW→`~1,2!# f ~w2!. ~3.1!

We have found~Fig. 3! that the pressure of the OPR~at
given density and temperature! is always less than in the
uniaxial nematic. Let us also note that the OPR order par
eterS2

OPR5^cos(2w)& is always greater than the nematic o
der parameterS2

N5(3^cos2u&21)/2 at the same density an
temperature~or at the same pressure and temperature!. We
have performed the Maxwell construction on the virial pre
sure isotherm and obtained the phase diagrams for the m
spherical model of the OPR. The phase diagram in coo
nates density temperature for thezs50.5 are shown in Fig.
4 and compared with the one forW50 @13#. The orienta-
tional phase transition in the OPR is of the second orde
high temperatures. In Fig. 4 it is shown by a thin line. At lo
temperatures this phase transition becomes of the first o
at the tricritical point. The region with greath that marked as
OPR~or N) is an oriented fluid forW→` ~andW50). One
can see that the region of the OPR is much greater. T
additional density-temperature region, where the OPR ex
of

e
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e
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-
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but there is no a uniaxial nematic phase, is shadowed.
phase diagrams in the pressure-temperature coordinate
shown in Fig. 5 for differentzs. For the sake of compariso
we also show the ones@13# for the MSA model of the
uniaxial nematic (W50). Depending on a given pressure th
fraction of the phase transition temperaturesTW→` /TW50
ranges from 1.2 to 1.5. The pressure of the OPR orderin
nearly 4–5 times less than that of the isotropic-nematic tr
sition at the same temperature.

Let us consider the elastic constants of our model. A
was noted before, the ordered PR fluid is a biaxial syst
Formal expressions for elastic constants in biaxial nema
are complex enough~see, for example, Ref.@19#, and refer-
ences therein!.But in the OPR case the things are mo
simple. First, our OPR system has symmetry planes; the
is nonpolar, and last, the OPR system is characterized by
director field described by a unit vectorn̂(r). Therefore, for
the macroscopic free energy of distortion we can use the w

FIG. 3. The pressure@P* 5(P/A)(ps3/6)# of the fluid at W
→` ~solid lines! and atW50 ~dashed lines! for kBT/A50.91 and
zs51.1.

FIG. 4. The phase diagram forzs50.5 in temperature-density
coordinates (T* 5kBT/A, h5prs3/6). The results forW50 @13#
are given as dashed lines. The results forW→` are plotted with
solid lines. OPR~N! means an oriented fluid phase. The shadow
region is a region where the OPR phase exists, but a uniaxial n
atic phase is absent.
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known expression for a uniaxial nematic containing th
bulk elastic constants:K1 ~splay!, K2 ~twist!, K3 ~bend! @1#:

Fd5
1

2
K1@“ r•n̂~r!#21

1

2
K2@ n̂~r!•“ r3n̂~r!#2

1
1

2
K3@ n̂~r!3“ r3n̂~r!#2. ~3.2!

On the other hand, the orientational distribution functi
~1.5! depends on a single argument. One can expand the
energy functional in just the same way as it was done for
distorted system of a uniaxial nematic@20,1# and obtain Eq.
~3.6! of Ref. @1#:

Fd /kBT5
1

4
r2E drdRdûdû8 ḟ @ n̂~r!•û# ḟ @ n̂~r!•û8#

3$~R•“ r!n̂~r!•û%$~R•“ r!n̂~r!•û8%c~R,û,û8!,

~3.3!

whereû is a unit vector along the molecular symmetry ax
the dot overf denotes differentiation of the distribution func
tion with respect to its single argument, that is,n̂•û. After
that, we have to take into account that in the OPR sys
there are the director fluctuations along thex axis only.
Therefore, three possible distortions of the director field c
take place:~1! splay in thex direction n̂(x,y,z)5êy1exêx ;
~2! twist in the z direction n̂(x,y,z)5êy1ezêx ; ~3! bend
along they axis n̂(x,y,z)5êy1eyêx . Inserting these one by
one into Eq.~3.3! one can simply read off the correspondin
bulk elastic constants

FIG. 5. The phase diagram of the MSA model in the pressu
temperature coordinates@P* 5(P/A)(ps3/6), T* 5kBT/A] for
different interaction ranges~determined byzs parameter!. The
isotropic-nematic phase transition~dashed lines! is of the first order
~results of Ref.@13#!. The OPR phase transition~solid lines! is of
the second order at high temperatures~thin lines! and of the first
order at low temperatures~bold lines!, crosses are the tricritica
points. N denotes the uniaxial nematic region, OPR denotes
OPR one.
e

ee
e

,

m

n

bKi
OPR5

1

2E dRdw1dw2

]r~w1!

]w1

]r~w2!

]w2
c~1,2!~Ri !

2,

~3.4!

whereR15Rx , R25Rz , R35Ry . It should be noted thatKi
~3.4! are elastic constants of a strongly biaxial nema
Other bulk elastic constants defined for a biaxial nematic
connected with the distortions that a prohibited by the in
nite fieldW and are, therefore, undefined for the OPR mod

For our model interaction potential~in both the casesW
→0 andW→`) the simultaneous rotation of a pair of mo
ecules~at fixed position of the molecule mass centers! does
not change their interaction energy. It was noted in Ref.@8#
that this causes directly

K15K25K35K, ~3.5!

which is not fulfilled in real nematics, of course. Our sol
tion reproduces Eq.~3.5! automatically, becausec(1,2) in
Eq. ~3.4! does not depend onR̂. Carrying out the integrations
with respect tow and using the explicit expressions fo
c(1,2) andr(1), one canverify that only c̄22(R) gives a
contribution intoKi

OPR. Since we have the analytical expre

sion for c̄22(R) ~see the previous section!, the calculation of
Ki

OPR is trivial.
In order to calculate elastic constants we can use also

expression from the hydrodynamic fluctuation theory, b
cause we have the analytical solution forh(1,2). Using rela-
tion ~3.5! and following@21# this expression can be rewritte
for our OPR model in the form

1

bK
5~S2

OPR!22 lim
k→0

k2E sinw1 cosw1f ~w1!h~1,2! f ~w2!

3sinw2 cosw2 exp~ ik•R12!dR12dw1dw2 . ~3.6!

Because of factork2, only the long-range behavior o
h(1,2) is important for calculation ofK. Substituting in Eq.
~3.6! the obtained asymptotic expression of the only lon
range harmonic of the total correlation function~2.19! we get
the simple expression

KOPRs~zs!2

A
5

9

2p

@~zs!2C̃ exp~2zs!22#2

R~zs!
~hS2

OPR!2.

~3.7!

The explicit expression for the elastic constant derived fr
Eq. ~3.4! is slightly more complex, but gives the same val
for KOPR. It should be noted that the formal expression f
the elastic constants atW50 coincides with Eq.~3.7! with
the only change: one has to replaceS2

OPR by the nematic
order parameter.

Dependences of elastic constants of the OPR (KOPR) and
of the uniaxial nematic (KN) at constant pressure are pr
sented in Fig. 6. One can see that the elastic constants
always greater for the OPR. It seems that this effect is m
pronounced for the more short-range potential (zs51.1).
The differenceKOPR(P,T)2KN(P,T) decreases with lower
ing temperature and tends to zero at perfect aligning, w
both S2

OPR andS2
N equal 1.

-

e



er
s
i
o
n
h

pa
tio
im
O
an
id
ca
at
on
d

te
is
P
t

w

e
n

Z
ng-
ase

try
s of

nd

first
e
er-
the

of
to

can
be

ly
in

d
ay.
ular
ec-

e-
ly-

use
enic
onal
s
enic
ri-

ps
can

n-
logy
ch

ne

6778 PRE 62T. G. SOKOLOVSKA, R. O. SOKOLOVSKII, AND M. F. HOLOVKO
IV. CONCLUSIONS

In this paper we consider the ordering in the fluids wh
the molecular orientations are partially constrained as a re
of some factors: strong fields, interface influences or,
some respect, the effect of impurities. The investigation
such systems can be useful in order to estimate the influe
of a strong biaxiality on physical properties of nematics. T
proposed theoretical approach for the calculation of the
correlation functions is based on the self-consistent solu
of the Lovett and OZ equations. This approach does not
pose any approximation other than a closure for the
equation. It correctly treats the long-range correlations
can be used for two- or three-dimensional anisotropic flu
with partially constrained orientations. For systems that
be described by the OPR the exact algebraic represent
of the Lovett equation is obtained. In this representation
can see the presence of long-range correlations in the mo
and our analysis shows that the OPR phase demonstra
critical behavior with respect to director fluctuations. This
a substantial property of the system connected with the O
symmetry and provides such a special physical feature as
elastic behavior.

The proposed method was applied to the well-kno
mean spherical model for nematics@17# under the influence
of an infinite disorienting fieldW, when the molecules ar
constrained to orient perpendicularly to the field directio

FIG. 6. The dependence of reduced elastic constants@K*
5(Ks/A)(zs)2# on T* at P* 51.4 for zs50.5 andzs51.1. The
results for the MSA of the nematic are dashed lines, the solid li
are results for the MSA of the OPR.
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For this problem the analytical solution of the anisotropic O
equation is obtained. The asymptotic expression for the lo
range correlations is presented in analytical form. The ph
diagrams and elastic constants are calculated forW→` and
are compared with those of the uniaxial nematic atW50
@13#.

The disorienting field transforms the system symme
and makes the ordered phase biaxial. Significant change
physical properties result from this induced biaxiality a
can be summarized for our model potential as follows:~1!
the temperature-pressure~or temperature-density! region of a
spontaneously ordered fluid increases significantly;~2! the
orientational phase transition changes its order from the
to the second one;~3! the disorienting field increases th
ordering and elastic properties of the model under consid
ation ~we say about elastic constants that are defined for
OPR!.

Since the important technical problem in application
the anisotropic fluids is to expand ordered fluid region and
increase the anisotropic properties, the induced biaxiality
be interesting also from the practical point of view and
useful to obtain mesomorphic phases in nonmesogens~the
systems that do not display liquid crystal behavior usual!.
For example, epitropic liquid crystal phases were found
para-dimethylbenzene@22#. Its molecules are nonpolar an
prefer to be parallel to the surface prepared in a special w
It was shown that near such a surface hundreds of molec
layers demonstrate a uniform nematic ordering with a dir
tor parallel to the surface.

From our point of view, very promising systems are sid
chain polymers. Modern technologies allow to produce po
mers with various characteristics of the backbone~main
chain! and of the side groups. For example, one can
mesogenic molecules as side groups. If the mesog
groups are directly attached to the backbone, an orientati
ordering is not usually exhibited@23#, because the dynamic
of the backbone suppresses the tendency for the mesog
groups to orient anisotropically. But main chains can be o
ented strongly by different processes~by the orienting flow,
for example!. In this case the rotations of mesogenic grou
are partially constrained by the ordered backbones and
be analyzed within the PR description.
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