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Orientational ordering in fluids with partially constrained molecule orientations
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Molecular orientations in anisotropic fluids can be partially constrained as a result of electric or magnetic
fields or interface influences. A statistical approach for the investigation of the orientational ordering in such
systems is proposed. The long-range correlations are taken into account consistently. The method is illustrated
for the well-known thermotropic nematic model in an infinite disorienting flldwhen the molecules are
constrained to orient perpendicularly to the field direction. For this problem the analytical solution of the
anisotropic Ornstein-Zernike equation is obtained, and the asymptotic expression for the long-range correla-
tions on large distances is given. The phase diagram and elastic constants are calculteefaand are
compared with the usual case of a uniaxial nematic orderivg=a0. In the cas&V— o when the temperature
decreases the orientational phase transition of the second order becomes the one of the first order at a tricritical
point. The disorienting fieldV increases much the region of an ordered fluid. It is shown that at a given
pressure the orientational ordering temperatureVibr oo is higher about 1.2—-1.5 times than the onéAat
=0. The orientational ordering pressure is less about 4-5 times than the pressure of the uniaxial nematic
ordering (W= 0) at the same temperature. The disorienting field increases elastic properties of the model under
consideration.

PACS numbgs): 61.30-v, 61.20.Gy, 64.60.Cn

The formation of a one-component biaxial nematic phasdact, because it has two principal directioi¥} that perpen-
is usually associated with fluids consisting of molecul@s dicular to the plane of particle rotation®) that given by the
aggregates of moleculethat do not have axial symmetry. direction of orderingn lying in this plane. In general, a bi-
Indeed, there is no example where a pure system of uniaxialxial system is characterized by two groups of order param-
molecules forms a biaxial nematic without external influ- eters, which describe ordering along two symmetry axes. An
ences[1]. But at some conditions this system does becoméPR fluid is alimiting biaxial system with the perfect order-
biaxial. This takes place near the interface with other meing with respect to one of the symmetry axes. We can ex-
dium (wall) if nematic molecules prefer to be parallel to the clude from consideration the group of the order parameters
surface pland2]. The biaxiality can be induced also by a describing this perfect ordering. In the coordinate system as
disorienting field 3]. It can be either the electric or the mag- done in Fig. 1 the axis of “the perfect ordering” is thexis,
netic field since many nematics have a negative anisotropy@nd an OPR model is characterized by order param&egrs
and their molecules tend to align perpendicularly to the field™ (€0osfig)) that depend on the temperature, density, and in-

_ S s terparticle interaction parameters.
[4]. In the limiting case of a strpng disorienting f.'ew di Let us note that models with fixed molecule orientations
rected along the axis the particles are constrained to be

liel to th | Fia. 1. For thi h (fluids of parallel moleculeswere studied in the context of
parallel to thexy plane(Fig. 1). For this case one can use the | ia a1 nematicg9]. These studies helped to estimate how

description that will be referred n th|s. paper as the,planethermodynamical and structural properties of uniaxial fluids
rotator (PR) models. These modelg which an orientation  giter from those of isotropic ones. Similarly, to study the
of the particlei is completely determined by the single angle
¢;) were studied intensively for the lattice systefase Refs.
[5-7], and references therginThe similar situation of par- A A 1174
tially constrained orientations can appear in systems of nonu- z ‘ |
niaxial molecules. On the experimental side, this situation
could take place for para-azoxy-anisdleAA) in a strong
electric field. PAA molecule is usually described as a rigid

bar with the permanent electric dipole in its center forming a 0

62° angle with the long axis. In the strong enough electric

field the dipoles aligi8], and the orientation of the long axis [0) /\| |h\
of any particle can be determined by the single argie the l

plane perpendicular to the field directidhig. 2).
Any oriented plane rotatofOPR model (in a result of
spontaneous ordering, for exampis a biaxial system in

N
X

FIG. 1. The coordinate system used in this papes the direc-
*Author to whom correspondence should be sent. Email addressor, W is a disorienting fielde determines the molecule orientation,
ccc@icmp.lviv.ua 6= m/2 is a constant for the PR models.
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A
AZVE d Vo, p(0)= [ 6(R.01,02)V, p(07)0RGw,

_ v(wy)
@1 kgT ’

(1.9

d wherep(w4) =pf(w4), p denotes a number density,, is
the angular gradient operator for an arbitrary part{dg],

d v(wq) is a potential of the interaction with a uniform exter-
nal field. Let us consider a system of uniaxial molecules in
the infinite disorienting field. We note that in general an
orientation of a lineatuniaxial) molecule 1 is determined by
a set of two angles;=(6,,¢,). For the disorienting field
directed along the axis we can writey (w4) =W P,(c0s6,),

FIG. 2. The model for PAA in the strong electric field disa  where P,(x) is the Ith order Legendre polynomial. When
permanent electric dipole forming a 62° angle with the long axis ofyw— o, for the x andy components of Eq(1.1) one obtains

a molecule. that p(w,) =0 if 6, /2. Sincew,=(¢,) We can use the

PR description now and the Lovett equation for the aniso-

OPR fluid is to estimate the influence of biaxiality on physi- tropic fluids with partially constrained orientations is repre-

cal properties of nematics. The behavior of nemaiieslud- ~ sented by the component of Eq(1.1)

ing the OPR fluidsresults from the interplay of orientation p p 3 v(el)

and density fluctuations. A consistent study of nematics has _“ _ 7 __7 1

to take into account correlations of all types, including cor- d¢q npled) J’ C((pl'(PZ)ﬂcpzp((pZ)d(pz de1 KgT

relations between spatial and orientational variables. More- (1.2

over, in spontaneously ordered nematics there are the long- : .

range correlations of director fluctuations. The existence o r, after integration by parts

these long-range correlations is a substantial property of P 9

nematics and results from the fact that the direction of order- —Inp(py)=— f —C((pl,goz)}p((pz)d(pz

ing is not predetermined and can be rotated without any en- IP1 Iz

ergy cost. Their calculations are very important because the J v(ey)

asymptotic behavior of these correlations at large distances T e KaT

determines the critical light scattering and elastic properties ¢1 "8

of nematics. In Ref4.10-13 the statistical approach ensur- yherey(¢,) is a potential of the interaction with the field

ing a correct treatment of correlations was developed fofnat  is  directed in the xy-plane, c(¢1,¢)
uniaxial fluids. But consistent methods to calculate Correla'zfc(R,¢1,¢2)dR. It should be noted that for a bulk phase
tion functions in the OPR fluids have not been developed Yelyr=R2d Rsin6rder, for a two-dimensional systenuR

In this paper we propose a statistical method of the inves- g 4 Rdppg.

tigation of the OPR models that is based on the solution of It is customary to consider the Ornstein-Zemikez)

the famous Lovett equatiofil4]. We consider a generally equation as a definition for the direct correlation function.

known model for thermotropic nematics in an infinitely gometimes, one can avoid a solution of the OZ equation and

strong disorienting fiel®V as an illustration of our approach. expressc(1,2) via a pair interaction potentiab(1,2). For

The pair correlation functions and the single-particle dism'example, for very long-range and weak interactiésignilar

bution function of this system are calculated analytically by, those described by the Kac potenttide direct correlation

the self-consistent solution of the Ornstein-Zernike andy,nction in the mean field forme(1,2)= — ¢(1,2) KeT

Lovett equations. The obtained elastic constants and pha%%uals the exact one; in the zero-density linfit,2) may be

diagrams foW— o0 are compared with those for the uniaxial |, iten as the Mayer functiorf(1,2)= exq—#(1,2)/kgT]

nematic case W=0) in the same model. The suggested _y it should be noted that in these limiting cases the sym-

method can be_ used for a'numer!cal SP'““O” of any OtheFnetry ofc(1,2) coincides with the pair potential symmetry.
model with partially constrained orientations. But in a general case the direct correlation function of an
orientationally ordered fluid loses the rotational invariance
intrinsic in the pair potential and reflects the symmetry of the
whole system. In this general cas€l,2) should be found
from the Ornstein-Zernike equation

1.3

I. THE LOVETT EQUATION FOR THE FLUIDS WITH
PARTIALLY CONSTRAINED MOLECULE
ORIENTATIONS

The Lovett equation follows from the fundamental prin- h(1,2)=c(1,2)+f p(3)h(1,3¢(3,2d(3), (1.4
ciple of the free energy minimizatidd 4] and relates the pair
direct correlation functiort(1,2) and the one-particle distri- h(1,2) is the total correlation function of the system, for the
bution functionf (1) [where (1)=(R;,w;) is a complete set PR modelgd(3)=dRs;de3, p(3)=pf(¢3). In Ref.[16] this
of coordinates of particle]1For anisotropic fluids the Lovett problem was solved for the partial cafgps) = 1/27 within
equation takes the form the hypernetted chai(HNC) and Percus-YevickPY) ap-
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proximations. For the OPR case, when the direatds par- ~ Refs.[10] and[11]. It should be stressed that these special
allel to they axis, the one-particle distribution function can harmonics for the OPR phase are connected with the corre-

be written in the form lations of director fluctuationgas well as in the uniaxial
case and give infinite contributions into the transverse sus-
1 ceptibility (along thex direction. Therefore, the director can
flp)=2""ex nzo Ancodne) |, (1.9 pe rotated in thexy plane without any energy cost. At the
same time these infinite harmonics do not contribute to the
whereZ is a normalization constant. For a bulk plane rotatorstructure factor, which is finit¢in other words, the OPR

fluid c(1,2) can be represented in the form: phase is mechanically stahle
We note that Eq91.9),(1.10 hold not only in the whole

B | iNeon —in - region of the OPR, but in the point, where the isotropic PR
c(1.2)= 2 2 Cnlnzm(Rﬁ)el 1e1e71"2%2Y m(Ryo), system loses the orientational stability. In order to determine

N 1,
fufz (1.6) this point one has to get(1,2) from the isotropic OZ equa-
tion (1.4) [ p(¢3) = p/27] in any approximation and to equal
and for the two-dimensional fluid in the following form: average values in E¢1.9) to the isotropic ones
. » ' _ _ 1
c<1,2>=nl;2’m Cnynym(Rip)€M191e™ N2¢26I MRy, (cosN;0))=0; (Sin(N,)siN(N5))=5 Snyn, -

(1.7 (1.1

Taking into account that the direct correlation function is  From Egs.(1.9) and(1.10, useful relations follow:
real and invariant with respect to a particle permutation, we
obtain the following expansion far(¢4,¢5)

m; (Sh-m—SnsmMAL=2nS,. (112

Cle1,p2)= E [Cnlnzcos{nlﬁ)cos(nz@z)
n1.n2=0 This rule connects the coefficients of the distribution func-
. . tion in the exponential form with the system order param-
n, SIN(N1¢1)SIN(N2¢2) ]. 18 eters. Using the assumption that in exponential f@fin®)
only A;#0, one obtains from Eq(1.12 the well-known
recurrent relations from the theory of the cylindrical Bessel

functions:

+€nl

When deriving Eq(1.8) we took into account that the OPR
is symmetric with respect to thez plane, where the both
principal directions lay. Substituting Eqg€l.5 and(1.8) in
Egs.(1.3) and(1.2) we obtain relations that hold exactly for _ A =2 11
the OPR: (Sh-1—Sn+1)A1=2nS,. (1.13

- This relation allows one to express all higher order param-
A, = > PCan(SIN(N20)SIN(Nz@))NzA, . (1.9 eters viaA; and$; using just simple arithmetic.
ny,ng

IIl. ANALYTICAL SOLUTION OF THE MEAN SPHERICAL
”1An1:n2 PCaynN2(COSN0)), (1.10 NEMATIC MODEL IN Al\'illé\lLIT:I)NITE DISORIENTING
2

where (---)=[---f(¢)dop, (cos(nz(p»zshz are the order We shall illustrate the proposed approach dealing with the

parameters of the OPR{&N(,¢)sin(3¢))=S,,—n,~Sh,+n, known model of thermotropic nemati€$7]: the pair poten-

can be expressed in terms of the order parameters. Matr|1>|<al is a sum of the hard-sphere potential for spheres of di-

equationg1.9) and(1.10 constitute an exact algebraic rep- dmetero and of anisotropic pas(1,2):

resentation of the Lovett equation for the OPR and can be 3cof w1

used for different fluids with partially constrained orienta- v(1,2)=v2(R12)—12, (2.1
tions. For example, they are suitable for the case presented in 2

Fig. 2.

Equations(1.9) and(1.10 relate the coefficients,, of the ~ Where @, is the angle between the preferred axes of the
single-particle distribution function with the density, tem- Molecules.w;=(6;,#;) being the orientation of molecuie
perature, and parameters of the model potential. This depeff12 IS the distance between the molecule mass centers, and
dence is determined by the direct correlation function har- exp — zRy,)
monics Cnyn, that are orthogonal to the both principal vo(Ry) = —A(Z(T)Z?12
directions. From the anisotropic OZ equatidn4) and rela- 1207
tion (1.9) it can be shown that the corresponding harmonics o o elation functionti(1,2) andc(1,2) are obtained
of the whole correlation functiom, », are infinite in the  from the OZ equatiori1.4). Within the mean spherical clo-
absence of the field(¢). This feature is connected with the sure(MSA)
critical nature of anisotropic fluidéhe presence of the long-
range correlationsand was discussed for uniaxial cases in c(1,2=-v(1,2/(kgT), Ri;>0 (2.3

(2.2
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the model is soluble analytically in an isotropic phase

[p(3)=p/(4m)] [17] and in a uniaxial nematic ca$e(3)
=pf(63)] [12,10. The method developed in Rdfl0] was

expanded for a numerical investigation of this model within
the reference HNC, HNC, and PY approximations in Ref.

T. G. SOKOLOVSKA, R. O. SOKOLOVSKII, AND M. F. HOLOVKO
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hij(Rlz):Cij(R12)+pf dRs% Cik(R13)

X(cogke)codle))hij(Ry),  (2.11)

[18]. The comparison with the Monte Carlo simulation car-where all indices equal 0 or 2. The closure of the correlation

ried out in a broad interval of temperaturfds8] shows that

the MSA gives the most reliable description of the model

thermodynamics. Due to Eq$1.9),(1.10 it is possible to

find the analytical solution in the MSA for this model in an

infinite disorienting field(in other words for the OPR flujd
For this case Eq2.1) transforms into the pair potential

vwox(1,2) =v2(R1p) (3 coS 01— 1)/12
=v,(R12) (3 cog2¢4,) +1)/4. (2.9

The interaction potentidR.1) we will refer to as the case of
zero disorienting field\W=0). In the MSA(2.3) there is a
simple expansion foc(1,2) of the OPR:

Cw-x(12= 2 [Cn,n,(R)COIN;p1)COINz¢2) ]
+CoA R)SIN(2¢1)SiN2¢,). (2.5

For the isotropic PR fluid one haszz(R)=€22(R) and
Coo(R) =cpy(R)=0, so that

Clvsvc:oo(laz) =Coo(R) + C2(R)cog 2¢1,).

We have to note that the expansi@5) is invariant with
respect to the transformatiopy— 7— ¢, and ¢,— 7— @5,

(2.6

functions in theR space are as follows:
the other harmonics are equal 0 under the core,

exp(—zR)

Ci(R)=(i+1)BA(z0) 20— =—,

R>o: Cii(R):

the other harmonics of the direct correlation function equal 0
above the core.

A detailed solution of the anisotropic OZ equation under
an additional condition such as E®.7) was done in litera-
ture [10—12. Therefore, we present only several important
analytical results, which follow from E¢2.10.

A basis for the solution is a factor correlation function,
which has the following form:

Q(R)= [Qo(R)+D exp(—zR)], (2.12

z
p(sif(2¢))
whereQ is a short-range part defined as

Qo(R)=C[exp—zR) — exp(—z0)], R<o,

Qu(R)=0, R>o. (2.13

since the orientational ordering is nonpolar in the model sys-

tem for the cas&V— o as well as for the cas&/=0. For
expansion2.5) the relationg1.9) and(1.10 gain the simple
form

1= p(si?(20)) [ CaRIAR 2.7

Ap=p(co92¢)) f c(R)AR. (2.9

We note that knowing the parametgir’(2¢)) one can cal-
culate from Eq(2.9) all order parameters. This paramefas
well as dimensionless coefficien® and C) can be found
from the purely algebraical relations following from Egs.
(2.10 and(2.7). One gets

Now, knowing the self-consistency equation for the OPR

order parameters
B (cog2¢))cod2¢)
(=] )exp{ ity |

X[ f exp[<cos<2<p>>cos<2¢>

(sirf(2¢))

one can solve the OZ equati¢h.4) under additional condi-

-1
d(p] , (2.9

tion (2.7) analytically by the Wertheim-Baxter factorization

method[10,11].

Due to the OPR symmetry the OZ equation separates par-

tially:

Rad Ri) = o R+ p(SiP(20)) | dRsCoe Ryl R,
(2.10

3 .
7 BAN(siIr(2¢))=R(z0), (2.14
where n=mpo°l6,
1. - A3(—z0)
R(ZO’) 24 1+(1—D) 1_T s
_ h2
D= b—+b 4ac, C=(1-D)/k,
2a
a=—kexp —2zo)— (k—1)[k—A3(—z0)],
b=(k—1)c—k+A3(—z0o)+k exp — 2z0),
c=2k—A3(—z0), An(X)=expx)— Z F
k=e %A4(zo). (2.15

A special integral transform d®(R)
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_ % _ When (sirfg)=3 from Eq. (2.14 follows the explicit
Q(k)= 1—P<5'n2(2€0)>f0 exp(ikR)Q(R)MR (2.1  equation for the line in the temperature-density space where
the isotropic PR system loses orientational stability with re-

plays a particular role. It is connected with harmonics of theSPECt 10 the OPR:
correlation functions (

8
=—R(z0), (2.23

nA\*
3

keT W— oo

1—p<Sin2(2¢)>fO exp(ik- R)c R)AR=Q(K)Q(~ k),
(2.17  Where the function of the interaction range parameter only
R(zo) is connected with the instability condition of the iso-

_ o _ _ tropic phase with respect to the uniaxial nematic by the re-
1+p<Sln2(2so)>f0 exp(ik- R)h(R)dR lation
~[QUOQ(—K)] . (218 (%) ~5R(z0). (2.24
B

The factor correlation function &=0 is inversely propor- W0

tional to the range of correlations. It follows from E@..7) One can see from Eq&2.23 and(2.24) that in the presence
thatQ(k=0)=0 in the OPR and is connected with the long- of a strong W— ) “disorienting” field the orientational
range correlationgthat were mentioned in Seg. Knowing  jnstability of an unoriented phase with respect to an oriented
the eXpIiCit fOI’m(Zla of the factor correlation function we one appears at much h|gher temperatures than in usual case
can obtain asymptotic expression for the single long-ranggf zero field.
harmonich,,(R) of the total correlation function Let us emphasize some differences of the ORRA{)
from the uniaxial nematic\/=0). It was found 3] that in a
(z0)? o strong disorienting field the orientational phase transition in
6[ (z0)%C exp(— zo) — 212 n(sirP(2¢)) R’ nematics can change its order from the first to the second
(2.19  one. This takes place for systems of nonpolar molecules
when the system symmetry changes from a uniaxial to a

The harmonicc,(R) can also be expressed explicitly in Strongly biaxial one. We shall consider this point from the

terms of the factor correlation functid(R) and its deriva- Point of view of the integral equation approach. As it was
tive Q' (R): noted above, the exact relatiof$.9 and (1.10 [or Egs.

(2.7 and (2.8), for our mode] hold not only in the whole
_ ) o region of the OPR, but also in the point where the isotropic
2mRC(R)= —Q'(R)+P<5m2(290)>J0 Q' (R+1)Q(t)dt.  pR system looses the orientational stability. We have to re-
(2.20 mind that in these points the long-range orientational corre-
lations are presented, and the susceptibility tends to infinity.

hoi R—o0) o

After simple integration we get Therefore, at greater densitiésr lower temperaturgsthe
isotropic state is impossible. This isotropic stability condi-
2 tion follows from Eq.(2.7), where we have to sésir’(2¢))

— Z B to
2mReAR)= (sir?(2¢)) [e-e*Rteote. e, R<o,  equal to its isotropic value (1/2) and to tagg(R) from a
s (2.21) solution of the isotropic OZ equatidm(¢) = p/27]:

2 —
where ;=J c5(R)dR. (2.29

=

1. - . I e
=—(C+D)(2Ce ?*-D-C+2)— -CDe 2%,

2 On the other hand, we can determine the limit of the OPR

existence, that is the lowest densfat a given temperature
eoz_azefzm, or the highest temperatur@t a given density where the
OPR phase is possible. The OPR phase is characterized by a
1 nonzero order parameter and long-range correlations of di-
€. =-C(C+D)e 2. rector fluctuations. From the anisotropic OZ and Lovett
2 equations we have obtained two conditions that describe

L ind that foR he di lation f .. these features and must hold in the whole OPR phastie
et us remind that foR> ¢ the direct correlation function is self-consistency equation for the order parame®y

defined by the MSA closure. As is to be expected, Zor = (cos(2p))
— 0 (the Kac potential limit our results are equivalent to the
mean field solution:

N

f decog2¢)exd A, cog2¢)] S,
= ;A= ;
(sinf(2¢))

c(1,2 =cps(Ryp) —v(1,2/kgTfor anyRy,, (2.22 S,

where ¢, s(Ry,) is the direct correlation function of hard fd‘PeXF[AZ cos2¢)]
spheres in the PY approximation, aR{zo) =1/24. (2.26
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has to have a nonzero solutigii) Eq. (2.7). The latter con- 2+ P
dition ensures the existence of the long-range correlations o, g |
director fluctuations. In order to obtain the limit of the OPR
existence we have to put into Ed2.7) the value of
(sir?(2¢)) at which a nontrivial solution of self-consistency 14
equation(2.26) appears. An equation of the forf@.26 is 121
known to have a nontrivial solution starting witBin’(2¢))

=1/2, S, smoothly raising from 0 to 1 whe(sir?(2¢)) de-

creases from 1/2 to 0. Taking this into account, we obtain the®® T
limiting condition of the OPR 0.6 -
5 04 |
—=| cIqR)dR, 2.2 02
P f 52 (R) (2.27) .
0 |
wherec2)S{R) is a solution of the anisotropic OZ equation ~ © 0.1 02 03 0.4 05

at (si¥(2¢))=1/2 (which corresponds 16,=0). Thus, E4S. kg 3. The pressurgP* = (P/A)(mo6)] of the fluid atw
(2.25 and (2.27) coincide for our PR model. The equiva- _, , (solid lineg and atw=0 (dashed linesfor ks T/A=0.91 and
lence of Eqs(2.25 and(2.27) supports the possibility of the ,,_1 1

second order phase transition that does take place at high

temperatures. . but there is no a uniaxial nematic phase, is shadowed. The
The similar analysis of the model fov=0[12,11] shows  phase diagrams in the pressure-temperature coordinates are
that in a uniaxial nematic the situation is different. In this shown in Fig. 5 for differenzo. For the sake of comparison
case the self-consistency equation is the well-known Mayerye also show the onefl3] for the MSA model of the
Saupe ong8] which has no solution for small values of the ||niaxial nematic W= 0). Depending on a given pressure the
order parameter. The bifurcation value of the order param¢ sction of the phase transition temperatuigg. .../ Tyw-o
eter (5,=0.3236) differs from the isotropic one{=0).  yanges from 1.2 to 1.5. The pressure of the OPR ordering is
Therefore, the conditions analogous to E@s29 and(2.27)  nearly 4-5 times less than that of the isotropic-nematic tran-
are not equal: the bifurcation takes place bef@esmaller  iiion at the same temperature.
densities and higher temperaturése isotropic liquid looses Let us consider the elastic constants of our model. As it
its orientational stability. Thus, the orientational phase trany,as noted before. the ordered PR fluid is a biaxial system.

sition of the second order is impossible, but the one of thg-qrma| expressions for elastic constants in biaxial nematics

first order does exist. are complex enougtsee, for example, Ref19], and refer-
ences thereinBut in the OPR case the things are more
lll. RESULTS. PHASE DIAGRAMS AND ELASTIC simple. First, our OPR system has symmetry planes; then, it
CONSTANTS is nonpolar, and last, the OPR system is characterized by the
Using the analytical solution in the MSA for the OPR we director field described by a unit vecto(r). Therefore, for
have calculated a virial pressure the macroscopic free energy of distortion we can use the well

2 *
oo p - J 17T ; 7
Py "= pkgT— _f dRyde1d@oR1—=—v (1,2 (1) 7
6 IRy

16+

X[1+hy (1,2 ]f(¢2). 3.9 151

We have found(Fig. 3 that the pressure of the OPRt 141

given density and temperaturées always less than in the 134
uniaxial nematic. Let us also note that the OPR order param- 12

eter S9PR=(cos(2p)) is always greater than the nematic or-
der parameteB) = (3(co6)—1)/2 at the same density and 11+
temperaturgor at the same pressure and temperatuiée

have performed the Maxwell construction on the virial pres-
sure isotherm and obtained the phase diagrams for the mean 0.9 T

spherical model of the OPR. The phase diagram in coordi- 08+

nates density temperature for the=0.5 are shown in Fig. n
4 and compared with the one foW=0 [13]. The orienta- 0.7 <
tional phase transition in the OPR is of the second order at 0 01 02 03 04

high temperatures. In Fig. 4 it is shown by a thin line. Atlow g6 4. The phase diagram far=0.5 in temperature-density
temperatures this phase transition becomes of the first ordgpgrdinates T* =kgT/A, n=mpasl6). The results foW=0 [13]

at the tricritical point. The region with greatthat marked as  are given as dashed lines. The results W+ are plotted with
OPR(or N) is an oriented fluid folW— <o (andW=0). One  solid lines. OPRN) means an oriented fluid phase. The shadowed
can see that the region of the OPR is much greater. Thifegion is a region where the OPR phase exists, but a uniaxial nem-
additional density-temperature region, where the OPR existstic phase is absent.
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ap(e1) dp(ey)

N2
Go ap. CLAR),

(3.9

1
BKR=3 f dRde1de,

whereR; =Ry, R,=R,, Rz=R, . It should be noted thd;
(3.4 are elastic constants of a strongly biaxial nematic.
Other bulk elastic constants defined for a biaxial nematic are
N connected with the distortions that a prohibited by the infi-
OPR 20=05 nite fieldW and are, therefore, undefined for the OPR model.
For our model interaction potenti@in both the casesV
—0 andW— o) the simultaneous rotation of a pair of mol-
ecules(at fixed position of the molecule mass cenyatses
T not change their interaction energy. It was noted in R&f.
that this causes directly

FIG. 5. The phase diagram of the MSA model in the pressure- K1=Ky=K3=K, (3.9
temperature coordinategP* = (P/A)(mwa®/6), T* =kgT/A] for o ) ) )
different interaction rangesdetermined byzo parameter The which is not fulfilled in real nematics, of course. Our solu-
isotropic-nematic phase transitiédashed linesis of the first order ~ tion reproduces Eq(3.5) automatically, because(1,2) in
(results of Ref[13]). The OPR phase transitiasolid lineg is of  Eq.(3.4) does not depend dR. Carrying out the integrations
the second order at high temperatutésn lineg and of the first  with respect toe and using the explicit expressions for

i ot o g s e e U (1) and (). op camery oy () v 4
pOPR e glen, contribution intok °PR. Since we have the analytical expres-

sion for?zz(R) (see the previous sectiprthe calculation of

. . o . . KOPRis trivial.

nown expression for a uniaxial nematic containing three II der lculate elasti tant Iso th

bulk elastic constantd{; (splay, K, (twist), K5 (bend [1]: n order o calculate elastic constants we can use aiso the
expression from the hydrodynamic fluctuation theory, be-
cause we have the analytical solution fqt,2). Using rela-

1 T P tion (3.5) and following[21] this expression can be rewritten
Fa=5Ki[V-n(N]"+ 5Kaln(r)- ¥V, xn(n)] for our OPR model in the form
1 - L _ ooz f o
+ 5 Kan(N XV, xn(r)]= (3.2 BK (S37R)2limk* | sing; cose:f(¢1)h(1,2f(¢2)
k—0
X sin P2 COS(,DZ eXF(i k- RlZ)dRIZd(PldQDZ . (36)

On the other hand, the orientational distribution function

(1.5 depends on a single argument. One can expand the free gocause of factok?, only the long-range behavior of

energy functional in just the same way as it was done for the, (1 2) is important for calculation df. Substituting in Eq.

distorted system of a uniaxial nemaf®0,1] and obtain Eq. (3 ¢) the obtained asymptotic expression of the only long-

(3.6 of Ref. [1]: range harmonic of the total correlation functihl9 we get
the simple expression

Fd/kBT=Zp2f drdRdudu’f[n(r)-u]f[n(r)-u’] KORo(zo)? 9 [(z0)’Cexp—20)—21° or,
o o o A T 27 R(zo) (S5™%
X{(R-V)n(r)-u{(R-V,)n(r)-u’'}c(R,u,u’), (3.7
(3.3

The explicit expression for the elastic constant derived from
Eq. (3.4 is slightly more complex, but gives the same value

-~ OPR H
whered is a unit vector along the molecular symmetry axis,foF K- It should be noted that the formal expression for
the elastic constants &/=0 coincides with Eq(3.7) with

the dot ovelf denotes differentiation of the distribution func- PR g
. . o oo~ the only change: one has to replas§™ by the nematic
tion with respect to its single argument, that msu. After
that, we have to take into account that in the OPR systen? rder parameter. : P
’ Dependences of elastic constants of the ORRF) and

there are the director fluctuations along tkeaxis only. f th iaxial o KN at tant i
Therefore, three possible distortions of the director field carf’ the umaxial nema icK™) at constan pressure areé pre

i A - ~ sented in Fig. 6. One can see that the elastic constants are
take place(1) splay in thex directionn(x,y,z) =€,+ €x&;  gjways greater for the OPR. It seems that this effect is more
(2) twist in the z direction n(x,y,z) =€, + €ze,; (3) bend  pronounced for the more short-range potentizd€1.1).
along they axisn(x,y,z) =&,+ eyé,.. Inserting these one by The differencek "R P,T) —KN(P,T) decreases with lower-
one into Eq.(3.3) one can simply read off the corresponding ing temperature and tends to zero at perfect aligning, when
bulk elastic constants both SSPRand S} equal 1.
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35 K" For this problem the analytical solution of the anisotropic OZ
equation is obtained. The asymptotic expression for the long-
range correlations is presented in analytical form. The phase
diagrams and elastic constants are calculated\ferc and

are compared with those of the uniaxial nematicVat 0

[13].

The disorienting field transforms the system symmetry
and makes the ordered phase biaxial. Significant changes of
physical properties result from this induced biaxiality and
can be summarized for our model potential as folloyis:
the temperature-pressui@ temperature-densityegion of a
spontaneously ordered fluid increases significar(@®; the
orientational phase transition changes its order from the first
to the second one(3) the disorienting field increases the
ordering and elastic properties of the model under consider-
ation (we say about elastic constants that are defined for the
OPR.

FIG. 6. The dependence of reduced elastic constfKts Since the important technical problem in application of
=(Ko/A)(zo)?] onT* at P*=1.4 forze=0.5 andzo=1.1. The  the anisotropic fluids is to expand ordered fluid region and to
results for the MSA of the nematic are dashed lines, the solid linesncrease the anisotropic properties, the induced biaxiality can

are results for the MSA of the OPR. be interesting also from the practical point of view and be
useful to obtain mesomorphic phases in nonmesogtmes
IV. CONCLUSIONS systems that do not display liquid crystal behavior usvally

In this paper we consider the ordering in the fluids wherd O €xample, epitropic liquid crystal phases were found in

the molecular orientations are partially constrained as a resuﬂara—mmethylbenzen@Z]. Its molecules are.nonpolar_ and

of some factors: strong fields, interface influences or, inPrefer to be parallel to the surface prepared in a special way.
it was shown that near such a surface hundreds of molecular

some respect, the effect of impurities. The investigation o q i ‘e orderi ith a di
such systems can be useful in order to estimate the influencaY€''s demonstrate a uniform nematic ordering with a direc-
tor parallel to the surface.

of a strong biaxiality on physical properties of nematics. The ; . - .
From our point of view, very promising systems are side-

proposed theoretical approach for the calculation of the pairh . | Mod hnoloai I q I
correlation functions is based on the self-consistent solutio§"&/N Polymers. Modern technologies allow to produce poly-

of the Lovett and OZ equations. This approach does not imMers with various 'characterlstlcs of the backbdneain

pose any approximation other than a closure for the tham) an_d of the side groups. For example, one can use
equation. It correctly treats the long-range correlations and'€S09enic molecules as side groups. If the mesogenic
can be used for two- or three-dimensional anisotropic fluigroups are directly attacheq to the backbone, an onenta_tlonal
with partially constrained orientations. For systems that carPrdering is not usually exhibitef®3], because the dynamics
be described by the OPR the exact algebraic representati(% the backpone SUPPresses the tendency fo_r the mesogenic
of the Lovett equation is obtained. In this representation on&"0UPS o orient anisotropically. But main chains can be ori-
can see the presence of long-range correlations in the mod&nted strongly by different processésy the orienting flow,

and our analysis shows that the OPR phase demonstrate 05 exa“?P'Q- In this case the rotations of mesogenic groups
critical behavior with respect to director fluctuations. This isare partially cqn;tramed by the QrQered backbones and can
a substantial property of the system connected with the OPRE @nalyzed within the PR description.

symmetry and provides such a special physical feature as the
elastic behavior.

The proposed method was applied to the well-known We thank Professor S. Romano for a fruitful correspon-
mean spherical model for nematick7] under the influence dence. T.G.S. and M.F.H. thank the Science and Technology
of an infinite disorienting fieldV, when the molecules are Center of the Ukraine for partial support of this research
constrained to orient perpendicularly to the field direction.(Grant No. 144Y.
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